

Typical Features

- Wide input voltage range 4:1
- ◆Efficiency up to 88%
- ◆Low standby power consumption
- ◆Operating Temperature from -40°C to +105°C
- High isolation voltage 2100VDC(input-output) & 2100VDC(input-case)
- ◆Input under voltage protection, output over voltage, short circuit, over current and over temp. protections
- Standard 1/4 brick size

Conform to CE

ZCD150-24S15A is a good performance DC-DC converter specially designed for the railway field. Its rated input voltage 24VDC (full range from 9V to 36VDC), regulated single output 15V/150W without minimum load limit. It has the advantages of high isolation voltage, Max operating temperature 105°C, with input under-voltage protection, output over-current, over-voltage, over-temperature and short circuit protections, input remote control, output voltage distal end compensation and Trim, etc. It is compliant with the railway standard EN50155 and widely used in the railway systems related equipment.

Typical Product List								
	Input voltage	Output	Output	Output	Ripple &	Full load		
Part No.	range	power	voltage	current	Noise	efficiency (%)	Remarks	
	(VDC)	(W)	(VDC)	(A)	(mVp-p)	Min/Typ.		
ZCD150-24S15AC								Standard
ZCD 130-243 13AC			15		150	86/88	Positive logic	
ZCD150-24S15AN							Standard	
ZCD 130-243 13AN	9 - 36	150		10			Negative logic	
ZCD150-24S15AC-H	9 - 36	130		10			Heatsink	
20D130-24313A0-11							Positive logic	
ZCD150-24S15AN-H							Heatsink	
ZGD 150-245 15AN-H							Negative logic	

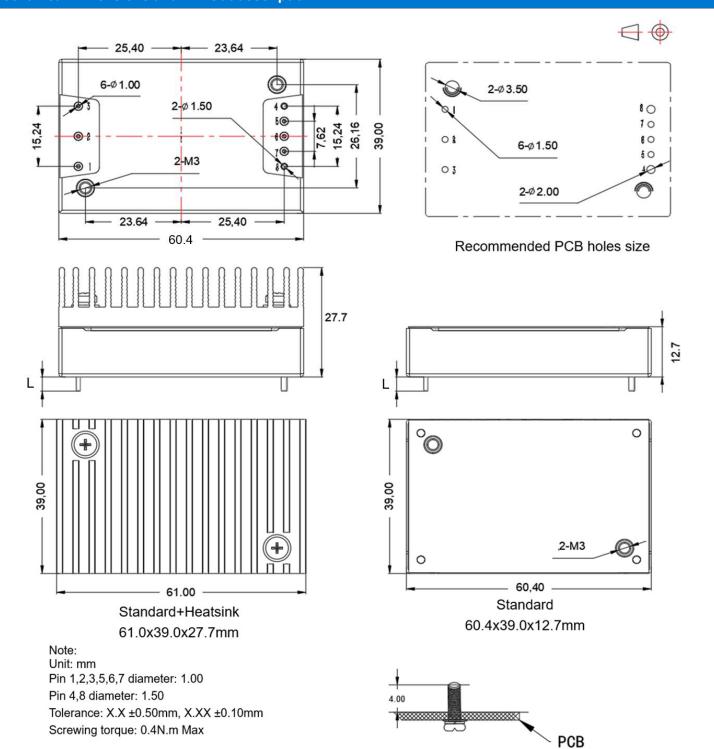
Note - The output power could be derated linearly at the input voltage range of 9-18V, the Max output power can be 100W at input voltage 9V.

Input Specifications					
Item	Operating conditions Min. Typ. Max		Max.	Unit	
Max input current	Input voltage 9V, output 100W	nput voltage 9V, output 100W 15			
No load input current	Rated input voltage	d input voltage 20		mA	
Input Inrush voltage (1sec. max.)	The unit could be permanently damaged by input over this voltage	-0.7		50	
Start-up voltage				10	VDC
Input under voltage protection	With No-load (over current protection will start in advance at full load)			9	
	Positive logic - CNT no connection or connect to 3.5-15 shut off the converter	V to turn on,	connect to	0-1.2V to	Reference
Remote Control (CNT)	Negative logic - CNT no connection or connect to 3.5-1st to turn on the converter	voltage -Vin			

Output Specifications					
Item	Operating conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy	Nominal input voltage, 0% -100% load		±0.2	±1.0	
Line Regulation	Full load, input voltage from low to high		±0.2	±0.5	%
Load Regulation	Nominal input voltage, 10%-100% load		±0.2	±0.5	
Transient recovery time	050/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200	250	uS
Transient Response Deviation	25% load step change (step rate 1A/50uS)	-5		+5	%
Temperature Drift Coefficient	Full load	-0.02		+0.02	%/°C
Ripple & Noise	20M bandwidth, test with capacitor ≥470uF		100	150	mVp-p
Output voltage adjustment (TRIM)		-20		+10	%
Output voltage distal end compensation (Sense)				105	%
Over temperature protection	Maximum temperature of the metal base	105	115	125	°C
Over voltage protection		125		140	%
Over current protection		11		13	А
Short circuit protection		Hiccup, continuous, self-recove			

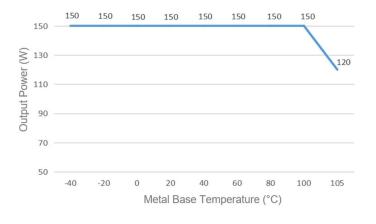
General Specifications						
Item	Operating of	conditions	Min.	Тур.	Max.	Unit
	I/P-O/P	Test 1min, leakage current < 3mA			2100	VDC
Isolation Voltage	I/P-Case	Test 1min, leakage current < 3mA			2100	VDC
	O/P-Case	Test 1min, leakage current < 3mA			500	VDC
Insulation resistance	I/P-O/P	@ 500VDC	100			ΜΩ
Switching frequency				210		KHz
MTBF			150			K hours

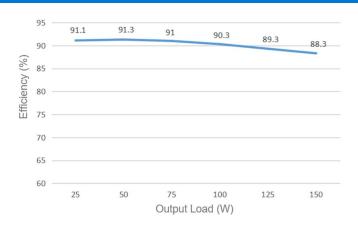
Environmental characteristics						
Item	Operating conditions	Min.	Тур.	Max.	Unit	
Operating Temperature	Refer to the temperature derating curve	-40		+105	°C	
Storage Humidity	No condensing	5		95	%RH	
Storage Temperature		-40		+125		
Pin Soldering temperature	1.5mm from the case, soldering time < 1.5S			+350	$^{\circ}\mathrm{C}$	
Cooling requirement		EN60068-2-1				
Dry heat requirement		EN60068-2-2				
Damp heat requirement		EN60068-2-30				
Shock and vibration		IEC/EN 61373 C1/Body Mounted Class B				

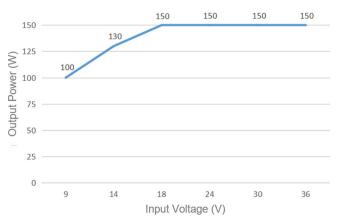

EMC Performances (EN50155)						
	CE -	EN50121-3-2	150kHz-500kHz 79dBuV			
EMI		EN55016-2-1	500kHz-30MHz 73dBuV			
EIVII		EN50121-3-2	30MHz-230MHz 40dBuV/m at 10m			
		EN55016-2-1	230MHz-1GHz 47dBuV/m at 10m			
	ESD	EN50121-3-2	Contact ±6KV / Air ±8KV	perf. Criteria A		
	RS	EN50121-3-2	10V/m	perf. Criteria A		
EMS	EFT	EN50121-3-2	±2kV 5/50ns 5kHz	perf. Criteria A		
	Surge	EN50121-3-2	Line to line \pm 1KV (42 Ω , 0.5 μ F)	perf. Criteria A		
	CS	EN50121-3-2	0.15MHz-80MHz 10 Vr.m.s	perf. Criteria A		

Physical Characteristics					
Case Materials Metal bottom shell + plastic case in black, flame class UL94 V-0					
Heat sink	Dimension 61.0x39.0x15.0 mm, weight 52g, aluminum alloy, anodized black				
Cooling method	Conduction cooling or forced air cooling with fan				
Product Weight	Standard 72g, with heatsink 125g				

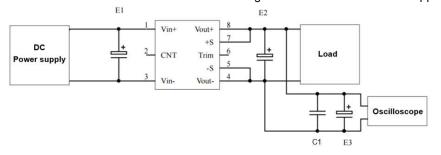
Mechanical Dimensions and Pin-Out description


Pin length L=3.7mm


No.	1	2	3	4	5	6	7	8
Pin-out	Vin+	CNT	Vin-	Vout-	-Sense	TRIM	+Sense	Vout+
Description	Input V+	Remote	Input V-	Output V-	Output distal end	Output	Output distal end	Output V+
Description	IIIput v+	Control	iliput v-	Output v-	compensation S-	Voltage Trim	compensation S+	Output v+



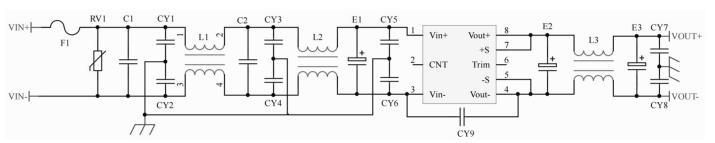
Product Performance Curves


Note:

- 1. The output power and the efficiency in the curves are tested with typical values.
- 2. The data in temperature derating curve is tested at Aipu laboratory test conditions. It is recommended to keep the temperature of the Metal base not more than 100 °C while the converter operates at the rated load for the customer application.

Recommended circuits for application

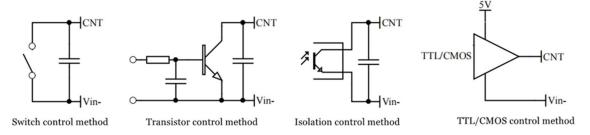
1. Ripple and Noise

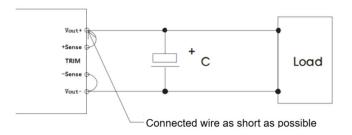

All this series of converters will be tested according to the circuit below before shipping.

Capacitance Output Volt.	E1 (µF)	E2 (µF)	C1(µF)	E3 (µF)	
3.3VDC		1000			
5VDC		680	1		
12VDC	100				
		220	1	10	
48VDC					
	68	68			
110VDC	68	68			

2. Typical application circuit

If this circuit recommended below is not adopted, please connect an electrolytic capacitor \geq 100 μ F in parallel at the input to suppress the possible surge voltage.




F1	T25A/63V Time-delay fuse
RV1	14D 63V Varistor
C1, C2	105/63V Polyester Film Capacitor
CY1, CY2, CY3, CY4, CY5, CY6	472/250Vac Y2 capacitor
CY7, CY8	103/2KV Ceramic Capacitor
CY9	471/250Vac Y2 capacitor
E1	220μF/63V Electrolytic Capacitor
E2, E3	470μF/25V Electrolytic Capacitor
L1,L2	>1mH, temperature rise less than 25°@15A
L3	>220uH, temperature rise less than 25°@10A

3. Remote control (CNT) application

4. Application for Sense


1) With NO distal end compensation

Notes

- 1. Vout+ & Sense+, Vout- & Sense- should be shorted when distal compensation is not needed
- 2. The lead wire between Vout+ and Sense+, Vout- and Sense- should be as short as possible, and close to the pins, or else the output may be unstable.

2) With distal end compensation

Notes:

- 1. The output voltage may be unstable if the compensation cables are too long.
- 2. The Twisted pair or shielded cables are recommended, the cable length should be as short as possible.
- 3. Wide copper path on PCB or thick lead wires between the power supply and the load should be used to achieve the line voltage drop <0.3V. The target is to keep output voltage within the specified range.
- 4. The leads wire resistance may create the output voltage oscillation or larger ripples. Please verify it before to use.

5. TRIM & TRIM resistance calculation

The calculation of $\triangle U$ and Rup & Rdown:

Rup=37.5/ \triangle U-5.1(K Ω)

Rdown=15*(15-2.5- \triangle U)/ \triangle U – 5.1(K Ω)

Voltage-up: Add Rup between Trim and Vout-

Voltage-down: Add Rdown between Trim and Vout+

6. This converter is not available for connection in parallel to increase the output power. Please contact Aipu technician for this kind of requirement.

Others

- 1. The product warranty period is two years. The failed product can be repaired/replaced free of charge if it operates at normal condition. A paid service shall be also provided if the product failed after operating under wrong or unreasonable conditions.
- 2. Aipupower can provide customization design and filter modules for matching, please contact our technician for details.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821

E-mail: sales@aipu-elec.com Website: www.aipupower.com